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Micro Aerial Vehicles 

• Low cost, small size (<1m) , adequate payload (1-5kg) 

• Superior mobility for indoor and outdoor applications 
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Transportation 
Search and rescue 

Aerial photography 

Law enforcement Inspection Agriculture 



How to Fly a MAV? 

• Remote control 
– Requires line of sight and/or communication link 

– Requires skilled pilots 

• Inertial navigation 
– Requires aviation grade IMU 

– Heavy and expensive 

• GPS-based navigation 
– GPS can be unreliable 
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Autonomy for MAVs 

• Sensing and perception 

 

• State estimation 

 

• Control 

 

• Planning 

 

• System integration 
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Current 
Research 
Focus 

Build on/Extend 
Previous Work 

Prototype 
Development 



Challenges 

• Stabilizing fast vehicle dynamics (5th order system) 
– Requires real-time onboard processing with low latency 

– Requires accurate state estimates 

 

• Limited payload (< 1kg) 
– Limited sensing 

– Limited computation 

 

• Complex environments 
– Unknown environments 

– GPS unreliable or unavailable 

 

5 



Related Work 

• Laser + IMU (Shen, et al. 2011; Bry, et al. 2012) 

– Pros: Computationally very efficient 

– Cons: Requires structured or known environments 

• Monocular Camera + IMU (Kottas, et al. 2012; Weiss, et al. 2013) 

– Pros: Low cost, relatively fast processing 

– Cons: Requires good initialization 

• Stereo Cameras + IMU (Fraundorfer, et al. 2012) 

– Pros: Directly observable scale 

– Cons: Limited baseline 

• RGB-D Sensor + IMU (Huang, et al. 2011) 

– Pros: Depth info directly available 

– Cons: Does not work outdoor 

• EKF-Based Multi Sensor Fusion (Lynen, et al. 2013) 

– Pros: Well documented and open source 

– Cons: Considered limited sensor setup 

 

 

Shen, et al, 2011 

Weiss, et al, 2013 

Fraundorfer, et al, 2012 

Huang, et al, 2011 
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State Estimation for MAVs 

• Power-on-and-go 
– Initialize from an arbitrary unknown state 

 

• Autonomy 
– State estimation in a wide range of environments 

 

• Fault-tolerant 
– Handle failure of one or more onboard sensors 

 

• Fail-safe 
– Recover from total failure of all sensors 
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Robot Sensing Computation Mass Environment Year 

Laser 
IMU 

 

Intel Atom 
1.6GHz 

 

1.7 kg 2.5D indoor 2010-2011 

Laser 
Kinect 
IMU 

 

Intel Atom 
1.6GHz 

 

1.9 kg 
 

2.5D indoor 
 

2011-2012 
 

Cameras 
IMU 

Intel Atom 
1.6GHz 

 

0.74 kg 3D indoor 
and limited 

outdoor 

2012-2013 

Laser 
Cameras 

GPS 
IMU 

Intel Core i3 
1.8GHz 

 

1.9 kg 3D indoor 
and outdoor 

2013-2014 

Camera 
IMU 

Intel Core i3 
1.8GHz 

1.3 kg 3D indoor 
and limited 

outdoor 

2014 
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The first self-contained autonomous 
indoor MAV 

Laser + IMU 
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Laser-Based Autonomous Indoor Navigation 



Laser-Based Autonomous Flight 
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6DOF Pose Estimation with Laser 

• Laser scans 2D slices of the environment 

• 2.5D indoor environment 
– All walls are vertical 

– Given attitude from the IMU, laser scans can be projected onto a 
common ground plane. 

– 2D scan matching for x, y, and yaw 
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6DOF Pose Estimation with Laser 

• Height measurement from redirected laser beams 

• Floor detection by fusing IMU and downward laser beams 
with a Kalman filter 

14 



Let the MAV build 3D maps fully 
autonomously! 
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Laser + Kinect + IMU 



Exploration – Autonomous 
Environment Coverage 

• 2D frontier-based exploration for single- and multi- 
ground/aerial  robot applications 
– Explore boundaries between unoccupied and unknown regions 

– Yamauchi, 1997;   Burgard et al., 2005;  

      Fox et al., 2006;   Vincent et al., 2008; 

      Bachrach et al., 2011;  Pravitra et al., 2011; 

 

Frontier regions 
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3D Exploration – Challenges 

• Challenges to frontier-based approach in 3D 
– Incremental dense free space and frontier regions update 

• Computation and memory demanding 

• Suboptimal exploration behavior due to limited sensing capability 

Dense free space Frontier goals 
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Stochastic diffusion 
term 

* Source: http://www.micromountain.com/sci_diagrams/sci_app/sci_app_pages/gasdiff_anim.htm 

Ideal Gas 

Deterministic Newtonian 
dynamics 

𝜏: Time constant 
𝑘𝑏: Boltzmann constant 
𝑇: Temperature 
𝜂(𝑡): 𝛿-correlated stationary zero-mean Gaussian process 

• Intuition: 
– Gas fills the container – gas “explores” the environment 

– Gas molecule follows a stochastic differential equation (Langevin equation) 

• 𝑥 𝑖 𝑡 = −𝛻𝑈 𝑥𝑖 𝑡 − 𝜏−1𝑥 𝑖 𝑡 + 2𝜏−1𝑘𝑏𝑇𝜂(𝑡)  
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Stochastic Differential Equation-based 
Exploration 



Dense free space 

Sparse free space 

Frontier goals 

SDEE goals 
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Stochastic Differential Equation-based 
Exploration 
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Relax the 2.5D assumption, and 
fly both indoor and outdoor 

MAV with heterogeneous 
sensors  
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Vision-Based Autonomous Flight 

Wide-Angle 
Cameras 

Intel Atom 
1.6GHz 

Low cost IMU 
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Vision-Based Autonomous Flight 

• Decoupled system design for efficient pose estimation 

– Linear rotation, position, and map estimation 

• Low-rate stereo vision for scale recovery 
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Indoor 

Indoor and Outdoor SLAM 



• Overview: 

– A modular Unscented Kalman Filter (UKF) for fusing heterogeneous sensors  

– Rapid sensor reconfiguration with minimum coding and calculation 

– Handling of GPS measurements to ensure smoothness 

Multi-Sensor Fusion for MAVs 

26 

Stereo Cameras GPS and 
Magnetometer 

Laser Scanner with 
Mirror Housing 

IMU and Pressure 
Altimeter 

Intel Core i3 
Computer 



Multi-Sensor Fusion for MAVs 
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• Add/remove heterogeneous sensors with minimum coding 
and calculation (no computation of Jacobian required) 



Multi-Sensor Fusion for MAVs 

• Modular derivative-free Unscented Kalman filter 

– Main state: 𝐱 = [𝐩𝑤, 𝚽𝑤, 𝐩 𝑏, 𝐛𝑎, 𝐛𝜔, 𝑏𝑧] 

 

 

– IMU-based state propagation model:  𝐱𝑡+1 = 𝑓(𝐱𝑡, 𝐚𝑡 , 𝐰𝑡 , 𝐧𝑡) 

 

• Handles delayed and out-of-sequence measurements using 
fixed-lag priority queue: 
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Position Velocity 
Orientation Bias 

Accelerometer 
Gyroscope 

Noise 



Heterogeneous Sensor Measurements 

• Proprioceptive sensor 
– Low cost MEMS IMU 

• Absolute measurements 
– GPS and magnetometer 

– Pressure altimeter 

– Optical flow velocity sensor 

– 𝐳𝑡 = ℎ 𝐱𝑡 + 𝐧𝑡 

• Relative measurements 
– Laser scan matching – 3DOF Pose 

– Visual odometry – 6DOF Pose 

– Laser altimeter 

– 𝐳𝑡 = ℎ 𝐱𝑡 , 𝐱𝑡−𝑘 + 𝐧𝑡 
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Heterogeneous Sensor Measurements 

• Kalman filter requires all measurements to be related to the 
current state only 

• State augmentation (Roumeliotis and Burdick, 2002) 
– May augment arbitrary copies of states depending on the availability 

relative sensors 
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      𝐱1 𝐱2 𝐱3 

𝐱3  𝐱3
𝐱3

 
State Augmentation 

𝐏33 𝐏33
𝐏33 𝐏33

 
𝐏33  

𝐱 5
𝐱3

 

          𝐱1 𝐱2 𝐱3 𝐱4 𝐱5 𝐏 55 𝐏 35
𝐏 53 𝐏33

 

𝐱5
𝐱3

 𝐳5 

𝐏55 𝐏35
𝐏53 𝐏33

 

Main 

Augmented 



Handling Ill-conditioned covariance matrix 
due to state augmentation 

• Review of unscented transform: 
– Gaussian approximation of a nonlinear transform of a Gaussian random 

variable: 

 

 

 

 

 

 

 

• Ill-conditioned covariance matrix due to state augmentation 
– Not full rank; Positive semi-definite 

– Cholesky decomposition not unique 
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Cholesky decomposition 

Gaussian approximation 

𝐏33 𝐏33
𝐏33 𝐏33

 𝐏33  
𝐏33 𝐏33
𝐏33 𝐏33

= ? 



Handling Ill-conditioned covariance matrix 
due to state augmentation 

• Unscented transform as statistical linearization (Lefebvre, et 
al, 2002): 

 
– Linear approximation: 

 

– Minimize linearization error: 

 

– Optimal linearization:  
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Handling Ill-conditioned covariance matrix 
due to state augmentation 

• Statistical linearization and state propagation 
– Cholesky decomposition of only main states 

– Unique decomposition 

 

 

 

 

 

 

 

• Measurement update the same as standard EKF 
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w.r.t. Main States 
w.r.t. Augmented States 



Smooth State Estimates 

• Sudden GPS availability causes discontinuities 

• Alternate way of GPS fusion via SLAM and frame transform 
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Pose graph SLAM 
in separate thread 

Indirect GPS 
fusion 

Compute frame 
transform with pose 

graph SLAM 
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Autonomous Navigation in Industrial Complex 



Results 
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Trajectory with reference map 

Covariance 



Results – Dam Inspection 
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• Emergency flooding gates at the Carter’s Dam, GA, 
USA 
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Carter’s Dam Autonomous Flight & Mapping 



What’s Left?  
– Initialization and Failure Recovery 

• Power-on-and-go 
– Initialize from an arbitrary unknown state 

 

• Autonomy 
– State estimation in a wide range of environments 

 

• Fault-tolerant 
– Handle failure of one or more onboard sensors 

 

• Fail-safe 
– Recover from total failure of all sensors 
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Assumptions for Initialization of 
Nonlinear Estimators 

• Full state observability – Initialize with the first measurement 
– GPS-based navigation 

 

• Known initial conditions 
– Takeoff from stationary condition 

 

• Approximations 
– Velocity from numerical differentiation of poses 

– Attitude from accelerometer 

– Visual scale from barometer/prior depth knowledge 

 

• What if all assumptions are invalid? 
40 



Monocular Visual-Inertial Systems 

41 
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Challenges 

• Scale ambiguity 

 

 

• Up-to-scale motion estimation and 3D reconstruction 
(Structure from Motion) 
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𝝀 =? 



Challenges 

• With IMU, scale is observable 

• But… 

– Requires initial velocity and attitude (gravity) 

– Highly nonlinear system – requires initial values to converge 
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𝒗𝟎 =? 
𝒈𝟎 =? 

Short term  
integration of IMU 

Can we operate without 
initialization? 

Or… 
Can we launch by 

throwing it into the air? 



Related Work 

• State-of-the-art solutions to monocular VINS 

– Filtering-based (Jones, et al. 2011; Weiss, et al. 2012; Li, et al. 2013) 

– Nonlinear optimization-based (Indelman, et al. 2013; Leutenegger, et al. 2013) 

– Requires good initial conditions, unable to recover from failure 

 

• Closed-form solutions (Lippiello, et al. 2013; Martinelli, 2013) 

– Suboptimal solution, poor performance with noisy IMU measurements 

 

• Initialization-free state estimation (Lupton, et al, 2012) 

– Reduces nonlinearity via frame transform 

 

• Handling degenerate motion in monocular VINS (Kottas, et al. 2013) 

– Explicit handling of hover motion, may lead to pessimistic covariance 
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Linear Sliding Window Monocular 
Visual-Inertial Estimator 

• Estimates position, velocity, gravity, and feature depth 

• Linear formulation enables recovery of initial condition  

• Marginalizes selected poses to bound computation cost 
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Initial 

Condition 

𝐩0
𝐯0
𝐠0

 
𝐩1
𝐯1
𝐠1

 

𝐩2
𝐯2
𝐠2

 
𝐩3
𝐯3
𝐠3

 
𝐩4
𝐯4
𝐠4

 

𝝀0 

𝝀1 



IMU Model 

• IMU integration in global frame 

– IMU has higher rate than camera 

– Nonlinearity from global rotation 

– Requires global rotation at the time of integration 
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𝑮 
𝑩𝟎 

𝑩𝟏 



IMU Model 

• IMU integration in the body frame of the first pose 

– Nonlinearity from relative rotation only 

– Linear update equations for position, velocity, and gravity 

– IMU Integration without initialization 
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𝑩𝟎 

𝑩𝟏 



Linear Rotation Estimation 

• Relative rotation constraints 
– Short term gyroscope integration 

– Epipolar constraints 

 

 

 

 

 

 

• Rotation estimation by relaxing orthonormality constraints 
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Columns of 
rotation matrices 

Relative rotation 



Camera Model 

• Linear in position and feature depth 

• Nonlinear in feature observation 

 

 

– Unknown scaling factor in observation covariance 
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𝑩𝟎 𝑩𝟏 𝑩𝟐 𝝀𝟎 



Linear Sliding Window Monocular 
Visual-Inertial Estimator 

• Linear system 

– Prior is not needed 

– Initial condition recoverable 

– Recoverable from failure 
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IMU Constraints Camera Constraints Prior 



Tightly-Coupled Nonlinear Sliding 
Window Optimization 

• Nonlinear optimization based on linear initialization 

– Optimize position, velocity, rotation, and feature depth simultaneously: 

– Rotation error modeled on the tangent space of rotation manifold 

 

 

 

– Iteratively minimize residuals from all sensors 
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Linearization 

IMU residual Reprojection error Prior 



Marginalization 

• Remove old poses to bound computation complexity 
– Convert removed measurements into prior 

• General motion:  
– Linear acceleration is required for scale observability 

• Degenerate motion – hover 
– No baseline 
– No acceleration 
– Scale unobservable 

• Degenerate motion – constant velocity 
– Has baseline 
– No acceleration 
– Scale unobservable 
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Marginalization 

• Two-way marginalization 
– Preserve acceleration and baseline within the sliding window 

– Marginalize either recent or old pose based on parallax heuristic 

– Scale observable for hover 

– Scale propagation for constant velocity 
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Insufficient  
Parallax Sufficient  
Parallax 



 

 

 

 

 

Results – On-the-Fly Initialization 
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Attitude Velocity 



• Simulation environment with 
sensor noise and MAV dynamics 

 

 

 

 

 

 

• The linear estimator well 
approximates the ground truth 

 

Results – Simulation 
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Linear estimate Ground truth 



Max Velocity: 2m/s, Max Attitude: 30 degrees 

Drift: [Position: < 0.1m], [Yaw: < 1 degree] 57 

Fast Trajectory Tracking 



Drift: [XY: 0.15m], [Z: 0.04m] [Yaw: 0.6 degrees] 
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Indoor Hand Carrying 



• No drift in 6-DOF pose 

• Position estimation StdDev: [0.0099, 0.0124, 0.0161] meters 

• Hover StdDev: [0.0282, 0.0307, 0.0161] meters 

 

 

 

 

 

Results - Hover 
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Position Orientation 



Conclusion 
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• Autonomous navigation in complex indoor and outdoor 
environments with micro aerial vehicles using a variety of 
sensors 

• State estimation for autonomous MAVs 
– On-the-fly initialization 

– Autonomy 

– Fault-tolerant 

– Fail-safe 

• Fully integrated systems with onboard processing 

• Publications: 
– Journal: 3 

– Conference: 10 



Future Work 

• Sensing and perception 

 

• State estimation 

 

• Control 

 

• Planning 

 

• System integration 
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• High level environment 
understanding 
 
 
 

• Estimation-aware  
control 

• Planning in partially 
known environments 
 

• Real world deployments 



Thank You! 

Questions? 
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