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I. INTRODUCTION

In this talk we will discuss some of our recent work [12, 13]
on the problem of controlling robots to perpetually act in a
changing environment, for example to clean an environment
where material is constantly collecting, or to monitor an
environment where uncertainty is continually growing. Each
robot has a small footprint over which to act (e.g. to sweep or
to sense). The difficulty is in controlling the robots to move
so that their footprints visit all points in the environment
regularly, spending more time in those locations where the
environment changes quickly, without neglecting the locations
where it changes more slowly. This scenario is distinct from
most other sweeping and monitoring scenarios in the literature
because the task cannot be “completed.” That is to say, the
robots must continually move to satisfy the objective. We
consider the situation in which robots are constrained to move
on fixed paths, along which we must control their speed.
Figure 1 shows three robots monitoring an environment using
controllers designed with our method.

We model the changing environment with a scalar valued
function defined, which we call the accumulation function.
The function behaves analogously to dust accumulating over
a floor. When a robot’s footprint is not over a point in the
environment, the accumulation function grows at that point at
a constant rate, as if the point were collecting dust. When a
robot’s footprint is over the point, the accumulation function
decreases at a constant rate, as if the dust were being vacuumed
by the robot. The rates of growth and decrease can be different
at different points in the environment.

We focus on the situation in which the robots are given
fixed, closed paths on which to travel, and we have to carry
out the persistent task only by regulating their speed. The
idea of decoupling the path planning from the speed control
has proved useful in dealing with complex trajectory planning
problems [7]. In some cases, paths may be given through
motion constraints. When we were are free to plan the path,
then we can employ an off-line planner to generate paths that
are optimal according to some metric (for example, by using
the planner in [11]).

Our approach to the problem is to represent the space of all
possible speed controllers with a finite set of basis functions,
where each possible speed controller is a linear combination

Fig. 1: A persistent monitoring task using three robots with heterogeneous,
limited range sensors. The surface shows the accumulation function, indicating
the quantity of material to be removed in a cleaning application, or the
uncertainty at each point in a sensing application. The accumulation function
grows when a robot’s footprint is not over it, and decreases when the footprint
is over it. Each robot controls its speed along its prescribed path so as to keep
the surface as low as possible everywhere.

of those basis functions. A rich class of controllers can be
represented in this way. Using this representation as our
foundation, we are able to solve a linear program (LP) to
generate optimal speed controllers.

A. Related Work
There is a large body of related work, and we refer the

reader to our recent submissions on the subject [12, 13] for
a full review. The main areas of related work include envi-
ronmental monitoring, sensor sweep coverage, lawn mowing
and milling, and patrolling. In the environmental monitoring
literature, the goal is commonly to control a robot, or group
of robots to estimate the state of the environment [6, 4, 14, 9].

Another area is sweep coverage, or lawn mowing and
milling problems, in which robots with finite sensor foot-
prints move over an environment so that every point in
the environment is visited at least once by a robot [2, 3].
Finally, in patrolling, an environment must be continually
surveyed by a group of robots such that each point is visited
with equal frequency [5, 8], or in some cases with specified
frequencies [1].
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Fig. 2: An illustration of a curve γ followed by one of the robots. The robot
is located at θ and has footprint B(θ). The set F (q) of robot positions θ for
which the footprint covers q are shown as thick grey segments of the curve.

In this work, we consider a more complex environment
model than in the sweep coverage and lawn milling and mow-
ing work, but a less sophisticated model than in environmental
monitoring. The result is that we are able to obtain speed
controllers with strong performance guarantees.

II. PROBLEM FORMULATION

We consider n robots, indexed by r ∈ {1, 2, . . . , n}.
Each robot is constrained to move along a pre-determined
path γr : [0, 1] → R2, where γr(0) = γr(1). Path γr is
parametrized by 0 ≤ θr ≤ 1, which is assumed to be the
arc-length parametrization. The robot’s position at time t can
be described by θr(t), its position along the curve γr. A
single robot example is shown in Figure 2. Each robot has
a sensor/sweeping footprint Br(θr(t)). This footprint could
be thought of, for example, as the cleaning surface of a
sweeping robot. The environment contains a finite number
of points of interests q ∈ Q. These finite points could be
the discretization of a continuous environment. A scalar field
Z(q, t) ≥ 0 is defined over the points of interest q ∈ Q. The
field (called the accumulation function) behaves analogously
to dust accumulating over a floor. At a point of interest q ∈ Q,
the field increases at a production rate of p(q) when not
covered by any robot footprints, and it is consumed at a rate
of cr(q), by each robot r whose footprint is covering q. More
specifically,

Ż(q, t) =
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where Nq(t) is the set of robots whose footprints are over the
point q at time t, Nq(t) := {r | q ∈ Br

�
θr(t)

�
}. We assume

that robot r knows the parameters p(q) and cr(q) for the field
evolution. However, the accuracy of the model is not crucial,
as we show analytically and in simulations that our method
has strong robustness with respect to errors in p(q).

III. COMPUTING SPEED CONTROLLERS

The goal of this work is to compute speed controllers
for each robot such that the field (accumulation function)

Z(q, t) is bounded for all time t, and for all points q. We
assume that for each robot r, and each position θr on the
robot’s path γr, there is a minimum and maximum allowable
speed vr,min(θr) and vr,max(θr). This allows us to express
constraints on the robot speed at different points on the
curve. For example, for safety considerations, the robot may
be required to move more slowly in certain areas of the
environment, or on high curved sections of the path. We first
show that we can consider simple speed controllers of the form
vr : [0, 1] → R>0, which map robot r’s position θr to a speed
vr(θr) ∈ [vr,min(θr), vr,max(θr)].

We show that a necessary and sufficient condition for
stability of the field is that

n�

r=1

τr(q)

Tr
cr(q)− p(q) > 0,

for all points of interest q ∈ Q, where Tr is the period (or cycle
time) of robot r along its path γr, and τr(q) is the amount
of time per period that robot r’s footprint is covering the
point of interest q. We then develop a method for producing
a speed controller vr(θr) for each robot r, which maximizes
the stability margin

min
q∈Q
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�
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Our approach is to parametrize each speed controller vr by a
finite set of basis functions:

v−1
r (θr) =

nr�

j=1

αrjβrj(θr),

where nr is the number of basis functions for the rth robot,
and αrj ∈ R and βrj : [0, 1] → R≥0 are robot r’s jth
parameter and basis function, respectively. We then show that
we can optimize over the coefficients of the basis function
representation by solving a linear program. It turns out that by
maximizing the stability margin, we obtain a controller which
has maximum robustness to errors in the field evolution model
p(q). In addition, we show that for a single robot, a linear
program can be formulated whose solution gives the controller
that minimizes the steady-state maximum field value.

IV. COLLISION AVOIDANCE AND EXPERIMENTS

In the solution procedure described above, robot paths may
intersect one another, and thus there may be collisions when
robots execute their paths. We have developed a method to
address this issue in [13], where we developed a collision
avoidance procedure for persistent monitoring. The procedure
is based on avoiding collisions by stopping robot motion. To
do this efficiently, we have determined methods for quantifying
the effect of stopping on the stability margin of the system.
The collision avoidance operates by identifying collision zones
in which collisions could occur. We then avoid collisions
by stopping and restarting robots so that at most one robot
occupies a given collision zone at any moment in time. We
have also design a procedure to avoid deadlocks; a situation



(a) t = 5 seconds (b) t = 12 seconds (c) t = 34 seconds

Fig. 3: Snapshots at different times of a distributed implementation for the persistent monitoring task with collision avoidance for two robots. The points of
interest are represented as green-filled circles, whose size is proportional to the value of the accumulation function Z(q, t) for each point q. Each robot’s
footprint is represented by a disk centered at the robot’s location, and it is the same color as the trajectory that robot is following.

in which a group of robots are all stopped, and are waiting
for each other to move before resuming motion.

We have implemented persistent monitoring controllers with
collision avoidance on a multi-robot system consisting of two
iRobot Create robots. Figure 3 shows three snapshots of the
evolution of the system in the implementation. This implemen-
tation was executed in a distributed way. Each robot only knew
information about itself, and communicated with the other
robot when entering a collision zone in order to decide whether
to continue its trajectory or stop to avoid collision. The robots
tracked their paths with their speed profiles using a controller
based on dynamic feedback linearization [10]. We have also
performed an implementation on quadrotor helicopters.

V. CONCLUSIONS

In this work we propose a model for persistent sweeping
and monitoring tasks and derived controllers for robots to
accomplish those tasks. We specifically considered the case in
which robots are confined to pre-specified, closed paths, along
which their speed must be controlled. We found speed con-
trollers by solving simple linear programs. We also discussed
a collision avoidance procedure, and and showed results from
recent physical implementations.
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