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I. INTRODUCTION

Networks of robotic sensors have the potential to safely
collect data over large-scale, unknown environments. They
can be especially useful in situations where the environment
is unsafe for humans to explore. In many such situations,
robots are also susceptible to hazards. It is important to design
exploration and mapping algorithms that are hazard-aware, so
that the robotic sensor network can effectively carry out its
task while minimizing the impact of individual robot failures.
In this work we describe an algorithm, based on an analytic
expression for the gradient of mutual information, that enables
a robotic sensor network to estimate a map of events in the
environment while avoiding failures due to unknown hazards.

(a) Event map (b) Hazard map

Fig. 1. The tragic accident at the Fukushima nuclear power plant in
Japan is a fitting scenario for our algorithm. Hypothetical maps of the
events and hazards are shown over an image of the Fukushima plant from
http://maps.google.com/. On the left, the events of interest are
structural defects represented by the explosion symbols, and the contour lines
represent the probability of detecting these defects. Sensors move to determine
where the structural defects are by increasing the informativeness of their
sensor readings. Black circles represent sensors that see a defect while white
circles do not see a defect. On the right, the hazards are radiation sources
represented by the

N
symbol, and the contours represent the probability

of failure due to radiation damage. By moving to increase informativeness,
the robots implicitly avoid hazards that may cause failure thereby preventing
information from being collected. The grayed-out robot in the center has failed
due to the high radiation levels.

Consider, for example, the recent tragic accident at the
Fukushima nuclear power plant in Japan, which sustained
critical damage from a large earthquake and tsunami in March,
2011. The algorithm we describe here could be used by a team

of flying quadrotor robots with cameras to inspect the plant for
structural damage, keeping human workers at a safe distance.
With our algorithm the robots could build a map of the areas
that are likely to have structural damage, while simultaneously
building a map of the radiation hazards, to avoid failure due to
radiation exposure. This scenario is illustrated in Fig. 1. Both
the event map and the hazard map are estimated online using
a recursive Bayesian filter, where the event map is estimated
from evidence of structural damage seen by the cameras,
and the hazard map is estimated by the previous failures of
other robots. The robots move along the gradient of mutual
information, which gives the direction of expected maximum
information gain given the current maps, thereby driving the
exploration of the environment. Our algorithm could also be
used, for example, to monitor forest fires while avoiding fire
damage, taking ocean measurements while avoiding damage
from adverse weather, or mapping a chemical spill site while
avoiding failure from caustic chemicals.

In all of these examples, the robots must move to both
avoid hazards and provide useful sensor information. Although
these two objectives may seem to be in conflict with one
another, they are in fact complementary. If we want to map
the events as precisely as possible, we implicitly want the
robots to avoid hazardous areas, since the failure of a robot
makes it unable to contribute to estimating the event map
in the future. We use the gradient of mutual information
to move the sensors so that their next measurements are
as informative as possible. The gradient strategy blends the
avoidance of hazards and the seeking of information into one
probabilistically consistent objective. The mutual information
gradient is then used to control the robots. We do not consider
decentralization of the algorithm, though that will be a central
concern of future work, and several existing methods can be
adapted for decentralization.

A. Related Work

Mutual information is one of the fundamental quantities in
information theory [1, 2] and has been used extensively as
a metric for robotic sensor network control and static sensor
placement. For example, in [3] and [4] mutual information
is used as a metric for driving robotic sensor networks in



gridded environments for target tracking and exploration tasks.
Also, [5] focused on decentralization and scalability using
particle filters to approximate mutual information for target
tracking. Recently in [6] the gradient of mutual information
was used to drive a network of robots, and a sampling
method was employed to improve computational efficiency.
The property of submodularity of mutual information was
used in [7] for placing static sensors at provably near-optimal
positions for information gain. Approximations on information
gain for static sensor placement were derived in [8] and an
informative trajectory planning algorithm was presented in
[9]. In a different but related application, [10] uses mutual
information to place static sensors to provide localization
information to a mobile robot.

In contrast to the literature described above, our work
is specifically concerned with estimating and avoiding en-
vironmental hazards as well as estimating the environment
state. Also, we use an analytically derived expression for the
gradient of mutual information for control, whereas previous
works have used grid-based finite difference methods to in-
crease mutual information (with the exception of [6]). A more
complete presentation of the work described in this abstract
will appear in [11].

The question we address is: How do we choose the next
positions x1, . . . , xn to make the next Bayesian estimate of
the event state as precise as possible? As already described,
implicit in this problem is the tendency to avoid hazards
because a failed robot is an uninformative robot. However,
in our scenario, as in real life, all the robots will eventually
fail. To counteract the depletion of robots, we let there be
a base station located in the environment that deploys new
robots to replace ones that have failed. We let the rate of
releasing new robots balance the rate of failed ones, so that
the total number of robots is constant at all times. However
many other interesting possibilities exist. One important metric
of performance is the asymptotic rate at which robots are lost
due to the hazards, which we would expect to be lower than if
we were using an information based approach without regard
to the hazards.

II. CONTROL FOR ACTIVE SENSING WITH HAZARD
AVOIDANCE

Consider a situation in which n robots move in a 3D
environment Q ⊂ R3. The robots have positions xi(t) ∈ Q
and we want to use them to sense the state of the environment
while avoiding hazardous areas that may cause the robots
to fail. Let the positions of all the robots be given by the
vector x = [xT

1 · · · xT
n ]T . The robots give simple sensor

measurements yi indicating wether or not they have sensed an
event of interest near by. They also give a signal to indicate
their failure status fi. Denote the random vector of all sensor
outputs by y = [y1 · · · yn]T and the vector of all failure
statuses as f = [f1 · · · fn]T .

The task of the robot network is to estimate the state of
the environment state, s = [s1 · · · sms ]

T , with as little
uncertainty as possible, while avoiding the unknown hazards

h = [h1 · · · hmh
]T . Let φ0(s) and ψ0(h) denote the

robots’ initial guess at the distribution of the state and the
hazards, respectively, which can be uniform if we have no
prior information about the events or hazards.

Let the robots sensors give readings at time t according to
a likelihood distribution P(yt

i | f t
i , s), and suppose that the

sensors conditioned on the environment state and hazard state
are independent, so that

P(yt | f t, s) = Πn
i=1P(yt

i | f t
i , s).

Similarly, let the probability of failure for a robot at time t
be given the environment and hazard state be P(f t

i | h), and
assume that the failures are independent conditioned on the
environment and hazard state, so that

P(f t | h) = Πn
i=1P(f t

i | h)

This gives the model for our environment and robots that
can be used to derive an information seeking, hazard avoiding
controller. Using the standard formulation of Bayes rule we
can find recursive filters to update the event distribution as

φt(s) =
P(yt | f t, s)φt−1(s)∑

s∈S P(yt | f t, s)φt−1(s)
,

and the hazard distribution is updated by

ψt(h) =
P(f t | h)ψt−1(h)∑

h∈H P(f t | h)ψt−1(h)
.

We use these updated estimates to move in the direction of
highest expected information gain.

In Shannon information theory [2, 1], the mutual infor-
mation between two random variables indicates how much
information one random variable gives about the other. In
our scenario, we want to move our robots so that their
next measurement gives the maximum amount of information
about the event distribution. Therefore the positions of the
robots are parameters of the join distribution of the mea-
surements and the events. We write Ps,y(x) to emphasize
this dependence. Then, letting Ps(x) :=

∫
y∈Y Ps,y(x) dy and

Py(x) :=
∫

s∈S Ps,y(x) ds, the mutual information between
measurements and events is given by

Is,y(x) :=
∫

y∈Y

∫
s∈S

Ps,y(x) log
Ps,y(x)

Ps(x)Py(x)
ds dy.

We will show that the gradient of the mutual information with
respect to the robot positions, ∂Is,y(x)/∂x, can be analytically
calculated and has a simple form. Despite its simplicity, this
analytic expression for the gradient of mutual information is
not yet widely used in the robotics community. Furthermore,
we can compute the mutual information gradient at time t
using φt(s) and ψt(h) from the Bayesian filter equations
above.

The gradient of mutual information allows us to use an
information seeking controller of the form

xi(t+ 1) = x(t) + k

∂Is,y(x)
∂xi∥∥∂Is,y(x)

∂xi

∥∥ + ε
,



where k > 0 is a maximum step size, and ε > 0 is a small
factor to prevent singularities when a local minimum of mutual
information is reached. Note that although this looks like a
gradient controller, the mutual information, Is,y , changes with
each new measurement, so it is a stochastic controller with
nonlinear dependence on the robots positions. For this reason
a formal stability and convergence analysis would be difficult.
However, intuitively the controller moves the robots in the
direction of the highest immediate expected information gain.

Empirically, the controller drives the robots to uncertain
areas while veering away from suspected hazard sites, learned
through the failures of previous robots. The robots eventually
come to a stop when they estimate the events with high
confidence (i.e. when the entropy of φt(s) approaches zero).
While hazard avoidance does not explicitly appear in the
control law, it is implicit as a robot failure will decrease the
amount of information gained at the next time step.

III. CONCLUSIONS

In this work we propose a multi-robot control policy that uti-
lizes measurements about events of interest to locally increase
the mutual information, while also using the history of robot
failures to avoid hazardous areas. We use an analytical expres-
sion for the gradient of mutual information, which provides a
principled approach to active mapping by calculating robot
trajectories that lead to the greatest immediate information
gain. The event state and hazard fields over the environment
are estimated using recursive Bayesian filters. The main draw-
back of the approach is high computational complexity. We are
currently working to develop well-reasoned approximations to
speed up computation. We are also investigating methods to
decentralize the algorithm to run over a multi-robot network.
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Fig. 2. This figure shows a representative simulation of the control algorithm
for three robots in an environment with four possible event and hazard
locations. Frame 2(a) shows the paths of the robots, where the triangles mark
initial positions, the squares mark final positions, and a discontinuity in the
path indicates a failure. The ’×’ shows the location of a hazard and the ’o’s
give the locations of events. Frame 2(b) shows the entropy of the event (solid)
and hazard (dotted) estimates. Both entropies decrease as the robots learn the
event and hazard locations. The number of failures per time and the mutual
information verses time are shown in frames 2(c) and 2(d), respectively.
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