

Autopilot design for small fixed wing aerial vehicles

Randy Beard
Brigham Young University

Outline

Control architecture

Low level autopilot loops

Path following

Dubins airplane paths and path management

Control Architecture

Control Architecture (2)

Outline

Control architecture

Low level autopilot loops

Path following

Dubins airplane paths and path management

Control Architecture

Lateral Control loop

PI control for outer loop

PD control for inner loop

Control course angle χ .

Sideslip Hold

If the airframe has a rudder, then the rudder is used to zero the side slip angle β .

Requires direct measurement or estimate of β .

Lateral Autopilot – In Flight Tuning

If model is not known, and autopilot must be tuned in flight, then the following gains are tuned one at a time, in this specific order:

Inner Loop (roll attitude hold)

- $k_{d_{\phi}}$ Increase $k_{d_{\phi}}$ until onset of instability, and then back off by 20%.
- $k_{p_{\phi}}$ Tune $k_{p_{\phi}}$ to get acceptable step response.

Outer Loop (course hold)

- $k_{p_{\chi}}$ Tune $k_{p_{\chi}}$ to get acceptable step response.
- $k_{i_{\chi}}$ Tune $k_{i_{\chi}}$ to remove steady state error.

Sideslip hold (if rudder is available)

- $k_{p_{\beta}}$ Tune $k_{p_{\beta}}$ to get acceptable step response.
- $k_{i_{\beta}}$ Tune $k_{i_{\beta}}$ to remove steady state error.

Longitudinal Autopilot – Traditional

Pitch Attitude Hold

- Pitch attitude hold used for most longitudinal modes.
- Note that DC gain is not unity.
- Adding an integrator on this inner loop is not a good strategy.

Longitudinal Autopilot – Traditional

$$\delta_t = 0$$

$$\theta^c = \left(k_{p_{V_2}} + \frac{k_{i_{V_2}}}{s}\right) (V_a^c - V_a)$$

$$Descend zone$$

$$h < h^c + h \text{hold}$$

$$\delta_t = \delta_t^* + \left(k_{p_V} + \frac{k_{i_V}}{s}\right) (V_a^c - V_a)$$

$$\theta^c = \left(k_{p_h} + \frac{k_{i_h}}{s}\right) (h^c - h)$$

$$Altitude \ hold \ zone$$

$$h < h^c - h \text{hold}$$

$$\delta_t = 1$$

$$\theta^c = \left(k_{p_{V_2}} + \frac{k_{i_{V_2}}}{s}\right) (V_a^c - V_a)$$

$$Climb \ zone$$

$$h < h \text{take off}$$

$$\delta_t = 1$$

$$\theta^c = \theta_{\text{take off}}$$

$$Take-off \ zone$$

Longitudinal Autopilot – In Flight Tuning

If model is not known, and autopilot must be tuned in flight, then the following gains are tuned one at a time, in this specific order:

Inner Loop (pitch attitude hold)

- $k_{d_{\theta}}$ Increase $k_{d_{\theta}}$ until onset of instability, and then back off by 20%.
- $k_{p_{\theta}}$ Tune $k_{p_{\theta}}$ to get acceptable step response.

Altitude Hold Outer Loop

- k_{p_h} Tune k_{p_h} to get acceptable step response.
- k_{i_h} Tune k_{i_h} to remove steady state error.

Airspeed Hold Outer Loop

- $k_{p_{V_2}}$ Tune $k_{p_{V_2}}$ to get acceptable step response.
- $k_{i_{V_2}}$ Tune $k_{i_{V_2}}$ to remove steady state error.

Throttle hold (inner loop)

- k_{p_V} Tune k_{p_V} to get acceptable step response.
- k_{i_V} Tune k_{i_V} to remove steady state error.

Airspeed and Attitude Coupling

• Traditional approach assumes longitude and lateral dynamics are decoupled

14

- Altitude and airspeed does not influence course and position
- Valid assumption
- Airspeed and altitude are decoupled
 - Invalid Assumption

Airspeed and Attitude Coupling

		Assumed Response		True Response	
Pitch	Thrust	Altitude	Airspeed	Altitude	Airspeed
\uparrow	-	\uparrow	-	\uparrow	\
$\overline{}$	-	₩	-	\	\uparrow
-	\uparrow	_	\uparrow	\uparrow	\uparrow
_	\downarrow	-	\	\	\downarrow

- Developed in the 1980's by Antonius Lambregts
- Based on energy manipulation techniques from the 1950's
- Control the energy of the system instead of the altitude and airspeed

• Kinetic Energy:
$$E_K \triangleq \frac{1}{2}mV_a^2$$

• Potential Energy:
$$E_P \triangleq mgh$$

• Total Energy:
$$E_T \triangleq E_P + E_K$$

• Energy Difference:
$$E_D \triangleq E_P - E_K$$

Original TECS proposed by Lambregts is based on energy rates:

•
$$T^c = T_D + k_{p,t}\dot{E}_t + k_{i,t}\int_{t_0}^t \dot{\tilde{E}}_t \delta_\tau$$

- $-T_D$ is thrust needed to counteract drag
- PI controller based on total energy rate

•
$$\theta^c = k_{p,\theta} \dot{E}_d + k_{i,\theta} \int_{t_0}^t \dot{\tilde{E}}_d \delta_\tau$$

- PI controller based on energy distribution rate
- Stability shown for linear systems

We will show that the performance of this scheme is less than desirable.

Nonlinear re-derivation:

• Error Definitions

$$\tilde{E}_K = \frac{1}{2}m\left(\left(V_a^d\right)^2 - V_a^2\right)$$

$$\tilde{E}_P = mg\left(h^d - h\right)$$

• Lyapunov Function

$$V = \frac{1}{2}\tilde{E}_T^2 + \frac{1}{2}\tilde{E}_D^2$$

• Controller

$$T^{c} = D + \frac{\tilde{E}_{T}^{d}}{V_{a}} + k_{T} \frac{\tilde{E}_{T}}{V_{a}}$$

$$\gamma^{c} = \sin^{-1} \left(\frac{\dot{h}^{d}}{V_{a}} + \frac{1}{2mgV_{a}} \left(-k_{1}\tilde{E}_{K} + k_{2}\tilde{E}_{P} \right) \right)$$

• Original:
$$T^c = D + k_{p,t} \frac{E_T}{mgV_a} + k_{i,t} \frac{E_T}{mgV_a}$$

• Nonlinear:
$$T^c = D + \frac{\dot{E}_T^d}{V_a} + k_T \frac{\tilde{E}_T}{V_a}$$

Similar if $k_{p,T} = mg$ and $k_{i,T} = mgk_T$.

The nonlinear controller uses the desired energy rate.

• Modified Original (Ardupilot):

$$\theta^{c} = \frac{k_{p,\theta}}{V_{a}mg} \left((2 - k) \dot{E}_{P} - k\dot{E}_{K} \right) + \frac{k_{i,\theta}}{V_{a}mg} \tilde{E}_{D}$$

$$k \in [0, 2]$$

• Nonlinear:

$$\gamma^{c} = \sin^{-1} \left(\frac{\dot{h}^{d}}{V_{a}} + \frac{1}{2mgV_{a}} \left(-k_{1}\tilde{E}_{K} + k_{2}\tilde{E}_{P} \right) \right)$$

$$k_{1} \triangleq |k_{T} - k_{D}|$$

$$k_{2} \triangleq k_{T} + k_{D}$$

$$0 < k_{T} \leq k_{D}$$

Lyapunov derivation suggests potential energy error should be weighted more than kinetic energy

If the drag is unknown, then we can add an adaptive estimate:

$$T^{c} = \hat{D} + \mathbf{\Phi}^{\top} \hat{\mathbf{\Psi}} + \frac{\dot{E}_{T}^{d}}{V_{a}} + k_{T} \frac{\tilde{E}_{T}}{V_{a}}$$

$$\gamma^{c} = \sin^{-1} \left(\frac{\dot{h}^{d}}{V_{a}} + \frac{1}{2mgV_{a}} \left(-k_{1}\tilde{E}_{K} + k_{2}\tilde{E}_{P} \right) \right)$$

$$\dot{\hat{\mathbf{\Psi}}} = \left(\Gamma_{T}\tilde{E}_{T} - \Gamma_{D}\tilde{E}_{D} \right) \mathbf{\Phi}V_{a}$$

Step in Altitude, Constant Airspeed

Step in Airspeed, Constant Altitude

Step in Altitude and Airspeed

Observations

- TECS seems to work better than successive loop closure.
- Still need separate mode for take-off
- Nonlinear TECS seems to work better, but the Ardupilot controller works very well.

Outline

Control architecture

Low level autopilot loops

Path following

Dubins airplane paths and path management

Control Architecture

Focus on following straight lines and helices

Dubins Airplane Model

Dubins airplane model:

$$\dot{r}_n = V \cos \psi \cos \gamma^c$$

$$\dot{r}_e = V \sin \psi \cos \gamma^c$$

$$\dot{r}_d = -V \sin \gamma^c$$

$$\dot{\psi} = \frac{g}{V} \tan \phi^c.$$

with the constraint that

$$|\phi^c| \le \bar{\phi}$$
$$|\gamma^c| \le \bar{\gamma}.$$

Path defined as intersection of two 2D manifolds in \mathbb{R}^3 :

$$\alpha_1(\mathbf{r}) = 0$$

$$\alpha_2(\mathbf{r}) = 0$$

The path given by the intersection is connected and one-dimensional. Define the function

$$V(\mathbf{r}) = \frac{1}{2}\alpha_1^2(\mathbf{r}) + \frac{1}{2}\alpha_2^2(\mathbf{r}).$$

Consider the velocity command

$$\mathbf{u}' = \underbrace{-K_1 \frac{\partial V}{\partial \mathbf{r}}} + \underbrace{K_2 \frac{\partial \alpha_1}{\partial \mathbf{r}} \times \frac{\partial \alpha_2}{\partial \mathbf{r}}}$$

Forces cross track convergence

Forces along track convergence

where $K_1 > 0$ and $K_2 > 0$.

Method based on: Goncalves, et. al., "Vector Fields for Robot Navigation Along Time-Varying Curves in n-Dimensions," IEEE Transactions on Robotics, vol. 26, pp. 647–659, 2010.

To ensure that the magnitude of the velocity vector is V, normalize \mathbf{u}' as

$$\mathbf{u} = V \frac{\mathbf{u}'}{\|\mathbf{u}'\|}.$$

The commanded flight-path angle γ^c , and the desired heading angle ψ^d are therefore given by

$$\gamma^{c} = -\operatorname{sat}_{\bar{\gamma}} \left[\sin^{-1} \left(\frac{u_{3}}{V} \right) \right]$$
$$\psi^{d} = \operatorname{atan2}(u_{2}, u_{1}).$$

Straight-line Paths

Method based on: Goncalves, et. al., "Vector Fields for Robot Navigation Along Time-Varying Curves in n-Dimensions," IEEE Transactions on Robotics, vol. 26, pp. 647–659, 2010.

Helical Paths

$$\alpha_{\text{cyl}}(\mathbf{r}) = \left(\frac{r_n - c_n}{R_h}\right)^2 + \left(\frac{r_e - c_e}{R_h}\right)^2 - 1$$

$$\alpha_{\text{pl}}(\mathbf{r}) = \left(\frac{r_d - c_d}{R_h}\right) + \frac{\tan \gamma_h}{\lambda_h} \left(\tan^{-1} \left(\frac{r_e - c_e}{r_n - c_n}\right) - \psi_h\right).$$

Parameterized by

- Spiral Center (c_n, c_e, c_d)
- Radius R_h
- Direction λ_h
- Initial heading ψ_h

Method based on: Goncalves, et. al., "Vector Fields for Robot Navigation Along Time-Varying Curves in n-Dimensions," IEEE Transactions on Robotics, vol. 26, pp. 647–659, 2010.

Outline

Control architecture

Low level autopilot loops

Path following

Dubins airplane paths and path management

Control Architecture

Options for Dubins car

For Dubins airplane, also need to address altitude

Low altitude case: $|z_{de} - z_{ds}| \leq L_{\text{car}}(R_{\text{min}}) \tan \bar{\gamma}$, Can achieve altitude gain without modifying Dubins car path.

High altitude case: $|z_{de} - z_{ds}| > [L_{car}(R_{min}) + 2\pi R_{min}] \tan \bar{\gamma}$.

Can achieve altitude gain by spiraling at beginning or end of Dubins car path.

Medium altitude case: $L_{\rm car}(R_{\rm min})\tan\bar{\gamma} < |z_{de} - z_{ds}| \le [L_{\rm car}(R_{\rm min}) + 2\pi R_{\rm min}]\tan\bar{\gamma}$ To achieve altitude gain, must add path deviation.

Path Management

Summary

Autopilot

- Successive Loop Closure for Lateral Control
- Total Energy Control System for Longitudinal Control

Path Following

3D Vector field method

Path Management

- Dubins airplane paths
- Methods are computationally simple, and easily fit on embedded processors.
- Methods have flown extensively on small fixed wing UAS.

Questions?