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REXES Lateral Control loop
PI control
for outer loop PD control for inner loop
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B Sideslip Hold
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If the airframe has a rudder,
then the rudder is used to zero the side slip angle (.

Requires direct measurement or estimate of £3.



BYY> Lateral Autopilot — In Flight Tuning

If model is not known, and autopilot must be tuned in flight, then the
following gains are tuned one at a time, in this specific order:
Inner Loop (roll attitude hold)

o kg, - Increase kq, until onset of instability, and then back off by 20%.
e ky, - Tune k), to get acceptable step response.
Outer Loop (course hold)
e ky - Tune k, to get acceptable step response.
e k; - Tune k; to remove steady state error.
Sideslip hold (if rudder is available)
e ky, - Tune k,, to get acceptable step response.

e ki, - Tune k;; to remove steady state error.



@Longltudmal Autopilot — Traditional

e Zero throttle
A Descend zone

e Regulate airspeed by commanding pitch attitude
h™ 4 Pnold | === =m === mm e
Be Altitude hold zone e Regulate altitude by commanding pitch attitude
e Regulate airspeed by commanding throttle
h" = Rhold | =======m=mmmmmmm oo
Climb zone e Full throttle
e Regulate airspeed by commanding pitch attitude
Pttt | o e e e
take off e Full throttle
Take-off zone e Regulate pitch to a fixed 6¢




@ Pitch Attitude Hold
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e Pitch attitude hold used for most longitudinal modes.
e Note that DC gain is not unity.

e Adding an integrator on this inner loop is not a good strategy.



@Longltudmal Autopilot — Traditional
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LBYUY  Longitudinal Autopilot — In Flight Tuning

If model is not known, and autopilot must be tuned in flight, then the
following gains are tuned one at a time, in this specific order:
Inner Loop (pitch attitude hold)

e k4, - Increase kg, until onset of instability, and then back off by 20%.
e k,, - Tune k,, to get acceptable step response.
Altitude Hold Outer Loop
o k,, - Tune k,, to get acceptable step response.
e k;, - Tune k;, to remove steady state error.
Airspeed Hold Outer Loop
® fkp,, - Tune k;,, to get acceptable step response.
® ki, - Tune k;, to remove steady state error.
Throttle hold (inner loop)
e k,, - Tune k,, to get acceptable step response.

e k;, - Tune k;, to remove steady state error.
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22> Airspeed and Attitude Coupling

e Traditional approach assumes longitude and lateral dynamics are decou-
pled

— Altitude and airspeed does not influence course and position

— Valid assumption

e Airspeed and altitude are decoupled
10f==mmm=m=mmmm===——=a

— Invalid Assumption
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Airspeed and Attitude Coupling

Assumed Response

True Response
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&xu>  Total Energy Control System

e Developed in the 1980’s by Antonius Lambregts
e Based on energy manipulation techniques from the 1950’s

e Control the energy of the system instead of the altitude and airspeed

Potential
Energy

Elevator

Drag
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Total Energy Control System

e Kinetic Energy: Ex = %me
e Potential Energy: Ep = mgh
e Total Energy: Er £ Ep+ Ex

e Emnergy Difference: Ep 2 Ep — Ex



&xu>  Total Energy Control System

Original TECS proposed by Lambregts is based on energy rates:

o ¢ = TD + kp,tEt + ki,t ftto E~'t57-

— 1'p is thrust needed to counteract drag

— PI controller based on total energy rate

o H¢ = ]fpﬁEd + ]{7;,9 ftl; EdéT

— PI controller based on energy distribution rate

e Stability shown for linear systems

We will show that the performance of this scheme is less than desirable.



&xu>  Total Energy Control System

Nonlinear re-derivation:

e Error Definitions

e Lyapunov Function

1~ 1 -
e Controller
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&xu>  Total Energy Control System

~

. Er Er
e Original: T°=D+kpt—— —— + k; 4 -
Ed Er
Nonli : T =D+ —/— + kpr——
e Nonlinear + 7 + K v

Similar it k, 7 = mg and k; r = mgkr.

The nonlinear controller uses the desired energy rate.



&xu>  Total Energy Control System

e Modified Original (Ardupilot):
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e Nonlinear:
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ko = kr + kp
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Lyapunov derivation suggests potential energy error should be weighted more
than kinetic energy



&xu>  Total Energy Control System

If the drag is unknown, then we can add an adaptive estimate:
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&xo>  Total Energy Control System

Step in Altitude, Constant Airspeed
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&xo>  Total Energy Control System

Step in Airspeed, Constant Altitude
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&xo>  Total Energy Control System

Step in Altitude and Airspeed
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&xo>  Total Energy Control System

e Observations

— TECS seems to work better than successive loop
closure.

— Still need separate mode for take-off

— Nonlinear TECS seems to work better, but the
Ardupilot controller works very well.
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B Dubins Airplane Model

Dubins airplane model:

—rq = Vsiny

rn = V cos cosy°©
7. = V sin cos ¢

rq = —V sin~°
of rspeedvector .
.. Y = % tan ¢°.
o = Vsinycosy with the constraint that
6°] < ¢

\

Flight path projected onto ground | ’7 | <



&xu> 3D Vector Field Path Following

Path defined as intersection of two 2D manifolds in R3:

&1(1‘) =0

%) (I‘) =0

The path given by the intersection is connected and one-dimensional. Define

the function
1 1

V(r) = Sai(r) + Sa3(r).
2 2
Consider the velocity command
oV 80&1 80&2
= — K1 — K
" Y or i 2"or " or ’

N J/

VO
Forces cross track convergence  Forces along track convergence

where K1 > 0 and K5 > 0.

Method based on: Goncalves,et. al., “Vector Fields for RobotNavigation Along Time-Varying Curves in n-Dimensions,”
IEEE Transactions on Robotics, vol. 26, pp. 647-659, 2010.



&xu> 3D Vector Field Path Following

To ensure that the magnitude of the velocity vector is V', normalize u’ as

u/

u=V

lu’[|

The commanded flight-path angle v¢, and the desired heading angle ¢ are

therefore given by
. —1 (U3
=ty [sin ()
y saty |sin T

Y = atan2(ug, u1).

Method based on: Goncalves,et. al., “Vector Fields for RobotNavigation Along Time-Varying Curves in n-Dimensions,”
IEEE Transactions on Robotics, vol. 26, pp. 647-659, 2010.
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=xv> 3D Vector Field Path Following

Straight-line Paths

Parameterized by

e Start Position ¢y Pline(ra QK)

Method based on: Goncalves,et. al., “Vector Fields for RobotNavigation Along Time-Varying Curves in n-Dimensions,”

IEEE Transactions on Robotics, vol. 26, pp. 647-659, 2010.



&xu> 3D Vector Field Path Following

Helical Paths

Parameterized by
e Spiral Center (c,, ce, cq)

e Radius Ry, T

e Direction )\ < |

e Initial heading 1y,

Method based on: Goncalves,et. al., “Vector Fields for Robot Navigation Along Time-Varying Curvesin n-Dimensions,”
IEEE Transactions on Robotics, vol. 26, pp. 647-659, 2010.



B Outline
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T Dubins Airplane

Options for Dubins car

For Dubins airplane, also need to address altitude
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Dubins Airplane

Low altitude case: |zge — 2z4s| < Lear(Rmin) tan ¥,

Can achieve altitude gain without modifying Dubins car path.
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T Dubins Airplane

High altitude case: |24 — 2z4s| > [Lcar(Rmin) + 27 Riin] tan 4.
Can achieve altitude gain by spiraling at beginning or end of Dubins car path.
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T Dubins Airplane

Medium altitude case: L., (Rmin) tan?y < |zge — 2ds| < [Lear (Rmin) + 27 Rmin] tan v
To achieve altitude gain, must add path deviation.
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Path Management
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LBy Summary

* Autopilot

— Successive Loop Closure for Lateral Control

— Total Energy Control System for Longitudinal Control
* Path Following

— 3D Vector field method
 Path Management

— Dubins airplane paths

* Methodsare computationally simple, and easily fit on embedded
processors.

* Methods have flown extensively on small fixed wing UAS.
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